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Abstract
We show that the complex PT -symmetric periodic potential V (x) =
−(iξ sin 2x + N)2, where ξ is real and N is a positive integer, is quasi-exactly
solvable. For odd values of N � 3, it may lead to exceptional points depending
upon the strength of the coupling parameter ξ . The corresponding Schrödinger
equation is also shown to go over to the Mathieu equation asymptotically. The
limiting value of the exceptional points derived in our scheme is consistent with
known branch-point singularities of the Mathieu equation.

PACS number: 03.65.−w

In recent times, considerable attention has been paid to the development (see, for example, the
comprehensive review [1]) of complex non-Hermitian systems admitting space-time reflection
(PT ) symmetry, the primary reason being rooted to the conjecture that the eigenvalues of the
governing Hamiltonians support [2] a real bound-state spectrum. However, the package of
PT -symmetric theories is such that should a spontaneous breaking take place, a loss of the
reality of the energies is incurred and complex eigenvalues appear in conjugate pairs. In
such a situation, the accompanying eigenfunctions cease to belong to the PT operator. The
critical points where some pairs of real eigenvalues transit to the complex plane turn out to be
exceptional points, i.e., points of the complex parameter space where two eigenvalues coalesce
[3, 4]4. Occurrences of the latter have been widely studied in the literature (see, for example,
[5–8]).

4 It should be noted that the critical points considered here are only special cases of exceptional points because (i)
we restrict the range of ξ in (1) to real values, while we might consider the whole complex plane, and (ii) exceptional
points do not necessarily occur as branch-point singularities of a single analytic function, but might also result from
the equality of two analytic functions.
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This communication investigates a new class of quasi-exactly solvable (QES) PT -
symmetric π -periodic potentials defined by

V (x) = −(iξ sin 2x + N)2 (1)

with ξ ∈ R and N being an integer, which has applications in one-dimensional crystal
problems [9]. We shall be interested here in π -periodic or π -anti-periodic solutions of the
corresponding Schrödinger equation, which are counterparts of the band edge wavefunctions
(often called eigenfunctions) of conventional theories for real periodic potentials (see, for
example, [10]). As will be demonstrated below, for odd values of N (� 3), V (x) leads to
complex-conjugate square-root branch-point singularities, implying the crossing of the energy
levels to the complex plane and giving rise to exceptional points. Here the eigenfunctions
turn out to be PT -symmetric and π -periodic in nature. In contrast, for even N, such critical
points are absent: there are only pairs of complex-conjugate eigenvalues with corresponding
eigenfunctions that are π -anti-periodic and fail to be PT -symmetric.

It should be noted that the ‘hyperbolic’ analogue of (1), namely [11]

V (y) = −(ζ sinh 2y − iM)2, (2)

where ζ ∈ R and M an integer, is also PT -symmetric but always has energies which are real
for all integer values of M and as such no critical point is encountered. A similar conclusion
holds for the cosh-version of (2) [12] (see also [13]) whenever M is an even integer because the
QES eigenvalues occur in complex-conjugate pairs, but it does not hold for M an odd integer
since then the QES eigenvalues are real for |ζ | smaller than or equal to some critical value.

Calculations carried out by us show that for the QES eigenvalues of (1), critical points
emerge when the quantity N |ξ | keeps to a value in the vicinity of 1.47 for N ∈ Nodd. This
prompts us to enquire into a large N behaviour of the Schrödinger equation having V (x) as its
potential. In units wherein h̄ = 2m = 1, the Schrödinger equation reads

−d2ψ

dx2
− (iξ sin 2x + N)2ψ = Eψ (3)

and it is a simple exercise to convince oneself that in the large N limit, equation (3) goes to the
form

−d2ψ

dx2
− 2ig sin 2xψ = Ēψ, (4)

where g = Nξ ∈ R and Ē = E + N2. In writing (4), we have assumed g to be finite under
the double limits N → ∞ and ξ → 0.

Interestingly, equation (4) is the Mathieu equation [14], in which branch-point singularities
are known to occur as exemplified in the works of Blanch and Clemm [15], Hunter and Guerrieri
[16], and others [17–19]. A variety of numerical methods have attempted to solve the Mathieu
equation with an imaginary characteristic parameter as is the case in (4). Tabular values from
an old paper of Mulholland and Goldstein [17] reflect5 that the eigenvalues Ēn would be both
real and conjugate complex: the transition occurring at g = gc = 1.4687 for solutions having
a period π . It is of utmost relevance that gc is consistent with our calculated transitional value
of N |ξ | ∼ 1.47 (where N is odd corresponding to π -periodic eigenfunctions) beyond which
the energy degeneracy is lifted, the critical points effecting a phase transition.

In a different context, Bender et al [20] have made a systematic WKB analysis of the
potentials of form V (y) = i sin2n+1(y) (n = 0, 1, 2, . . . ) to justify that these have real bands
and gaps, the wavefunctions turning out to be always periodic at the edges of each band. The

5 After making a change of the coordinate x → t − π
4 without affecting the underlying periodicity.
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presence of the coupling g in the Mathieu equation (4), however, makes it of a more general
character and facilitates the study of critical points.

We now turn to (3) and proceed to interpret it as a QES system. Typically QES problems
may be generated by means of a universal enveloping algebra U(sl(2)) [21, 22]. Here we
observe that in terms of the sl(2) generators

J+ = z2 d

dz
− 2jz, J0 = z

d

dz
− j, J− = d

dz
, (5)

the Hamiltonian H can be mapped to the following spectral problem

Hg = 4J 2
0 + 2ξJ+ + 2ξJ− − N2 + ξ 2 (6)

for j = (N − 1)/2, where in principle both even and odd values of N are allowed. To arrive
at the representation (6) we utilized the connections

Hg = [µ(z)]−1Hµ(z),

µ(z) = z(1−N)/2 exp
[

1
4ξ

(
z − 1

z

)]
,

(7)

with z = exp(2ix), as is required to have a gauge-transformed form.
The eigenvalues and eigenfunctions of H can now be derived from those of (2) by means

of an anti-isospectral transformation y → ix, ζ → −iξ,M → N [23, 24]. We can check that
the gauge function and the gauged Hamiltonian written in [11] transform to µ(z) and −Hg as
they should. Thus equations (6) and (7) are in the true spirit of quasi-exact solvability.

Our results for some of the eigenvalues E and eigenfunctions ψ(x) of H are furnished
below (σ, τ = ±):

•N = 1: E = −1 + ξ 2, ψ(x) ∝ e
i
2 ξ sin 2x,

•N = 2: Eσ = −3 + 2iσξ + ξ 2, ψσ (x) ∝ e
i
2 ξ sin 2x(cos x − σ sin x),

•N = 3: E0 = −5 + ξ 2, ψ0(x) ∝ e
i
2 ξ sin 2x cos 2x,

Eσ = −7 + ξ 2 − 2σ
√

1 − 4ξ 2,

ψσ (x) ∝ e
i
2 ξ sin 2x

[
2i sin 2x +

1

ξ
(1 + σ

√
1 − 4ξ 2)

]
,

•N = 4: Eσ,τ = −11 − 2iσξ + ξ 2 − 4τ
√

1 + iσξ − ξ 2,

ψσ,τ (x) ∝ e
i
2 ξ sin 2x(cos x + σ sin x)

[
i sin 2x +

1

ξ
(1 + τ

√
1 + iσξ − ξ 2)

]
.

(8)

The expressions for the energy and the associated eigenfunctions for higher values of N
are more cumbersome: of the five solutions for N = 5, one set of energy eigenvalues

Eσ = −15 + ξ 2 − 2σ
√

9 − 4ξ 2 (9)

is obtained by solving a quadratic equation and the corresponding eigenfunctions are

ψσ (x) ∝ e
i
2 ξ sin 2x cos 2x

[
2i sin 2x +

1

ξ
(3 + σ

√
9 − 4ξ 2)

]
, (10)

while the other set corresponds to the cubic equation

E3 + 20E2 + 64(1 + ξ 2)E + 768ξ 2 = 0, (11)

where E = ξ 2 − 25 − E, with eigenfunctions

ψ(x) ∝ e
i
2 ξ sin 2x(sin2 2x + b sin 2x + c). (12)

3



J. Phys. A: Math. Theor. 41 (2008) 022001 Fast Track Communication

In (12), the quantities b and c are given by the relationships

b = − i

4ξ
(16 + E), c = 24 + E

E
. (13)

The three solutions of E from (11), when substituted in (13), yield the corresponding values
of b and c which, in turn, provide the expressions for the eigenfunctions from (12).

We thus note that for even N,PT symmetry is broken: only pairs of complex-conjugate
eigenvalues exist, the corresponding eigenfunctions being π -anti-periodic. On the other hand,
for odd N, there is at least one real eigenvalue irrespective of whether PT symmetry is broken
or not, while the remaining ones are either real or in complex-conjugate pairs depending upon
a critical value of ξ . However, the corresponding eigenfunctions are π -periodic but their being
PT -symmetric or not depends upon the nature of eigenvalues.

While it is trivial to see from (8) that for N = 3 there are critical points at |ξ | = 0.5,
determining those for the case N = 5 requires solving the cubic equation (11). A little algebra
shows that the condition for the existence of one real and a pair of complex-conjugate roots
relies upon the positivity of � that is defined by

� = 16ξ 6 − 4ξ 4 + 103ξ 2 − 9. (14)

Solving for � = 0 gives the roots ξ 2 = 0.0876 and 0.0812 ± i(2.5331), from which we
immediately identify critical points in the neighbourhood of |ξ | = 0.296. The other branch-
point singularities at |ξ | = 1.5, where the eigenvalues (9) coalesce, are situated further away
from those coming from the cubic equation (11) and for the purpose of comparison with
Mathieu equation do not interest us.

The above procedure can be continued further. For N = 7, we are led to a cubic equation

E3 + 56E2 + 16(49 + 4ξ 2)E + 768(3 + 2ξ 2) = 0 (15)

and a quartic one

E4 + 56E3 + 16(49 + 10ξ 2)E2 + 384(6 + 17ξ 2)E + 2304ξ 2(24 + ξ 2) = 0, (16)

where E = ξ 2 − 49 − E. A search for their zeros tells us that there are critical points coming
from the latter and situated at |ξ | = 0.2107 further which the eigenvalues develop square-root
singularities. The corresponding eigenfunctions are too complicated to be given here.

Putting everything together, it is significant to note the convergence of the quantity N |ξ |
to the value of 1.47. Indeed our findings are

N |ξ | = 1.5 for N = 3

= 1.4797 for N = 5

= 1.4749 for N = 7

(17)

which are comfortably close to the Mulholland–Goldstein estimate of gc = 1.4687. The
trend prevails for higher odd integers N as well, as our numerical results have indicated. We
therefore conclude that the QES model given by (1) is well described by an imaginary sine
potential in the large-N limit. The presence of the imaginary coupling constant iξ makes
the role of the critical points very specific as comparison with the numerical solutions of the
Mathieu equation has shown.

Summarizing, we have proposed a QESPT -symmetric periodic potential which possesses
real and/or complex-conjugate eigenvalues. The latter may assume square-root branch-point
singularities signalling the appearance of exceptional points. It is also established that our
model goes over to the Mathieu equation asymptotically and that, even for rather moderate odd
values of N, there is a remarkable coincidence of the limiting value of the lowest exceptional
points found in our scheme with the estimates of the lowest branch-point singularities of the
Mathieu equation [17, 18].
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